

2ª FASE EXAME DISCURSIVO

03/12/2017

QUÍMICA

CADERNO DE PROVA

Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Química. A Classificação Periódica dos Elementos está na página 15.

Não abra o caderno antes de receber autorização.

INSTRUÇÕES

- 1. Verifique se você recebeu mais dois cadernos de prova.
- 2. Verifique se as seguintes informações estão corretas nas sobrecapas dos três cadernos: nome, número de inscrição, número do documento de identidade e número do CPF.
 - Se houver algum erro, notifique o fiscal.
- 3. Destaque, das sobrecapas, os comprovantes que têm seu nome e leve-os com você.
- 4. Ao receber autorização para abrir os cadernos, verifique se a impressão, a paginação e a numeração das questões estão corretas.
 - Se houver algum erro, notifique o fiscal.
- 5. Todas as respostas e o desenvolvimento das soluções, quando necessário, deverão ser apresentados nos espaços apropriados e escritos com caneta de corpo transparente, azul ou preta.
 - Não serão consideradas as questões respondidas fora desses espaços.
- 6. Ao terminar, entregue os três cadernos ao fiscal.

INFORMAÇÕES GERAIS

O tempo disponível para fazer as provas é de cinco horas. Nada mais poderá ser registrado após o término desse prazo.

Nas salas de prova, os candidatos não poderão usar qualquer tipo de relógio, óculos escuros e boné, nem portar arma de fogo, fumar e utilizar corretores ortográficos e borrachas.

Será eliminado do Vestibular Estadual 2018 o candidato que, durante a prova, utilizar qualquer meio de obtenção de informações, eletrônico ou não.

Será também eliminado o candidato que se ausentar da sala levando consigo qualquer material de prova.

QUESTÃO 1

Apesar de apresentarem propriedades químicas distintas, os elementos flúor, neônio e sódio possuem números atômicos próximos, conforme destacado a seguir.

Dentre esses elementos, nomeie o que apresenta maior estabilidade em relação à regra do octeto e indique o símbolo daquele cujos átomos têm o maior número de camadas eletrônicas. Em seguida, nomeie a ligação interatômica formada entre Na e F e apresente a fórmula química do composto resultante dessa ligação.

Desenvolvimento e resposta:

Com os símbolos dos vários elementos químicos conhecidos, é possível formar palavras. Considere que uma empresa, utilizando uma sequência de cinco símbolos de elementos químicos, criou um logotipo para divulgar a marca de seu produto. Observe:

A partir do logotipo e com base na tabela periódica, identifique o símbolo do metal de transição interna que apresenta menor número atômico. Em seguida, nomeie o elemento de maior energia de ionização do grupo do telúrio.

Ainda considerando o logotipo, classifique, quanto à polaridade, o tipo de ligação formada entre o elemento de maior eletronegatividade e o hidrogênio. Classifique, também, o tipo de geometria do composto de menor massa molar formado por esses dois elementos.

Desenvolvimento e resposta:

QUESTÃO OS

As reações a seguir foram realizadas em um laboratório, em condições idênticas de temperatura e pressão, para o recolhimento dos gases indicados pelas letras A e B.

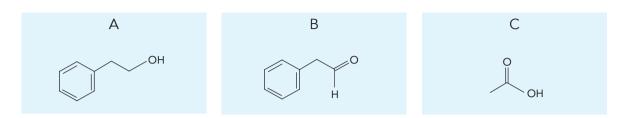
(I)
$$CaCO_3$$
 (s) \rightarrow CaO (s) $+$ A (g)
(II) Mg (s) $+$ 2 $HC\ell$ (aq) \rightarrow $MgC\ell_2$ (aq) $+$ B (g)

Indique as fórmulas moleculares dos gases A e B, nomeando aquele de maior massa molar. Nomeie, também, o sal formado na reação II.

Desenvolvimento e resposta:	

A dopamina e a adrenalina são neurotransmissores que, apesar da semelhança em sua composição química, geram sensações diferentes nos seres humanos. Observe as informações da tabela:

Neurotransmissor	Fórmula estrutural	Sensação produzida
dopamina	HO NH ₂	felicidade
adrenalina	HO HO H	medo


Indique a função química que difere a dopamina da adrenalina e nomeie a sensação gerada pelo neurotransmissor que apresenta menor massa molecular.

Identifique, ainda, o neurotransmissor com isomeria óptica e escreva sua fórmula molecular.

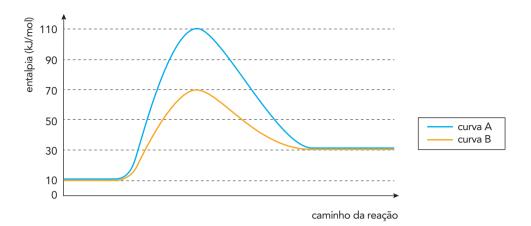
Desenvolvimento e resposta:	

Ao abrir uma embalagem de chocolate, pode-se perceber seu aroma. Esse fato é explicado pela presença de mais de duzentos tipos de compostos voláteis em sua composição. As fórmulas A, B e C, apresentadas a seguir, são exemplos desses compostos.

Escreva o nome do composto A e a fórmula estrutural do isômero plano funcional do composto B. Utilizando fórmulas estruturais, escreva, também, a equação química completa da reação do etanol com o composto C. Em seguida, nomeie o composto orgânico formado nessa reação.

Desenvolvimento e resposta:	

Em um laboratório, foi realizado um experimento de oxidação de uma mistura de álcoois na presença de $K_2Cr_2O_7$ e H_2SO_4 . A tabela abaixo apresenta os álcoois presentes na mistura.


Álcoois	Quantidade (mol)
propan-1-ol	3
propan-2-ol	2
metilpropan-1-ol	1
metilpropan-2-ol	4

Em relação à mistura, nomeie a isomeria plana que ocorre entre os álcoois de cadeia carbônica normal. Considerando apenas os componentes orgânicos, calcule a fração molar de álcoois presentes após a oxidação total. Escreva, ainda, as fórmulas estruturais dos ácidos carboxílicos formados.

Desenvolvimento e resposta:

QUESTÃO 7

Observe no gráfico os valores de entalpia ao longo do caminho de uma reação de hidrogenação do pent-2-eno, em duas condições: presença e ausência de catalisador.

Indique a curva que representa a reação química na presença de catalisador e calcule, em kJ/mol, sua energia de ativação.

Determine, ainda, a variação de entalpia dessa reação, em kJ/mol, e nomeie o produto formado.

Desenvolvimento e resposta:	

Em função de seu poder oxidante, a solução de hipoclorito de sódio, usualmente conhecida como água sanitária, e o ozônio são utilizados na higienização de frutas e hortaliças. Quanto maior o poder oxidante, maior a capacidade de higienização.

Considere as reações abaixo, que indicam os valores dos potenciais-padrão E° de redução do ozônio e do íon hipoclorito.

$$O_3$$
 (g) + H_2O (ℓ) + 2 e⁻ \rightarrow O_2 (g) + 2 OH^- (aq) $E^\circ = +1,24 \ V$

$$C\ell O^{-}(aq) + H_{2}O(\ell) + 2 e^{-} \rightarrow C\ell^{-}(aq) + 2 OH^{-}(aq) E^{\circ} = + 0.89 V$$

Indique a fórmula estrutural plana do ozônio e determine o número de oxidação do cloro no íon hipoclorito.

Com base nas informações apresentadas, indique, também, a substância que atuaria de maneira mais eficaz na higienização dos alimentos, justificando sua escolha.

Desenvolvimento e resposta:

Para realizar um estudo, uma solução aquosa de amônia foi preparada e transferida para um tubo de ensaio a 25°C. O equilíbrio químico da reação de ionização da amônia é representado pela seguinte equação:

$$NH_3^-$$
 (g) + H_2^- O (ℓ) \longrightarrow NH_4^+ (aq) + OH^- (aq)

Calcule o pH da solução preparada, sabendo que sua concentração hidroxiliônica é igual a 10^{-2} mol/L. Classifique, ainda, o comportamento da água na reação apresentada, segundo a teoria de Bronsted-Lowry.

Em seguida, indique o que ocorrerá com a concentração da amônia ao ser acrescentado $HC\ell$ ao tubo de ensaio. Justifique sua resposta.

Desenvolvimento e resposta:	

11

QUESTÃO 1 (

Um medicamento utilizado como laxante apresenta em sua composição química os sais Na_2HPO_4 e NaH_2PO_4 , nas concentrações de 142 g/L e 60 g/L, respectivamente. A eficácia do medicamento está relacionada à alta concentração salina, que provoca perda de água das células presentes no intestino.

Admitindo que cada um dos sais encontra-se 100% dissociado, calcule a concentração de íons Na⁺, em mol/L, no medicamento.

Em seguida, também em relação ao medicamento, nomeie o sal com menor concentração e a propriedade coligativa correspondente à sua ação laxante.

Desenvolvimento e resposta:	

13

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

(Adaptado da IUPAC - 2017)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IA																	VIII A
1 <u>2,1</u> H 1	IIA											III A	IV A	VA	VI A	VII A	He
3 <u>l,0</u> Li 7	Be											5 <u>2,0</u> B 11	C 12	N	O 16	F 19	Ne 20
Na 23	Mg 24	III B	IV B	VB	VI B	VII B	loo	VIII B	28 1,8	I B	II B	13 1,5 Al 27 31 1,6	Si 28	P 31	S 32	CI 35,5	Ar
19 0,8 K 39	Ca	Sc 45	Ti 48	V 51	Cr 52	25 1,5 Mn 55	Fe 56	Co	Ni 58,5	Cu 63,5	Zn 65,5	Ga 70	Ge	As 75	Se	Br	Kr 84
37 0,8 Rb 85,5	Sr 87,5	39 1,2 Y 89	Zr 91	Nb 93	Mo 96	TC (98)	Ru	Rh 103	Pd 106,5	Ag	Cd 112,5	In 115	Sn	Sb	Te 127,5	 127	Xe 131
55 0,7 Cs 133	Ba 137	lantanídeos	72 1,3 Hf 178,5	73 1,5 Ta 181	74 1,7 W 184	75 1,9 Re 186	OS 190	77 <u>2,2</u> r 192	78 2,2 Pt 195	79 2,4 Au 197	Hg 200,5	81 1,8 TI 204	Pb 207	Bi 209	Po (209)	At (210)	Rn (222)
87 0,7 Fr (223)	Ra (226)	89-103 actinídeos	Rf (267)	Db (268)	106 Sg (269)	Bh (270)	108 Hs (269)	109 Mt (278)	Ds (281)	Rg (281)	Cn (285)	Nh (286)	114 FI (289)	MC (288)	116 Lv (293)	Ts (294)	Og (294)

NÚMERO ATÔMICO	ELETRONE- GATIVIDADE									
SÍMBOLO										
MASSA ATÔMICA APROXIMADA										

sos	57 1,1	58 1,1	59 1,1	60 1,1	61 1,1	62 1,2	63 1,2	64 1,2	65 1,2	66 1,2	67 1,2	68 1,2	69 1,2	70 1,2	71 1,3
aníde	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
lanta	139	140	141	144	(145)	150	152	157	159	162,5	165	167	169	173	175
SC	89 1,1	90 1,3	91 1,5	92 1,7	93 1,3	94 1,3	95 1,3	96 1,3	97 1,3	98 1,3	99 1,3	100 1,3	101 1,3	102 1,3	103 1,3
níde	Ac	Th	Pa	U	qΝ	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
actiníde	227	232	231	238	237	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

